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We apply the Holstein-Primakoff and Bogoliubov transformations to compute the spin-wave states of small
magnetic structures including the effect of the dipolar interaction. We found that as the film gets thicker, states
with a significant q=0 component, are hybridized with states with higher Fourier components. In the presence
of a static magnetic field opposite to the magnetization direction, surface states that are responsible for
magnetization reversal are coupled to the extended states. The response function is increased by an order of
magnitude. This suggests an intriguing scenario for assisted switching of the magnetization with an additional
external ac field.
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I. INTRODUCTION

Motivated by recent studies on spin-polarized transport,
magnetic memory, sensor, and spin wave logic devices using
small structures, there have been burgeoning interest in the
physics of spin waves in these systems.1–4

Of interest is the response of a small structure in the pres-
ence of both external static and time varying fields in differ-
ent directions; such as occurs in the study of the ferromag-
netic resonance and, more recently, in the context of assisted
switching with ac fields.5,6 A major obstacle in the large scale
commercialization of magnetic random access memory is the
precise control of the switching of the magnetization. As-
sisted switching offers one possible way to address this issue.
The external fields are usually relatively uniform spatially
and thus couples strongly only to excitations with a signifi-
cant q=0 Fourier component. Because the structure is finite
and may not be of uniform shape, states of different q values
are coupled; more than one excitation can exhibit a signifi-
cant q=0 response.

Most recent numerical calculations of the spin wave spec-
trum are obtained by solving for the time evolution of the
spins under the Landau-Lifshitz-Gilbert �LLG� equation.2

This approach is quite time consuming. Here, we directly
compute the spin-wave spectrum from the diagonalization of
its Hamiltonian matrix containing the spin-wave operators.
This approach is much faster and enables us to investigate
how the properties change as the system parameters are
changed. Grimsditch and co-workers1 have studied the spin-
wave spectrum by diagonaling the dynamical matrix ob-
tained from linearizing the classical phenomenological LLG
equation. They have not discussed the response function.

We found dramatic changes as the system parameters are
changed. We consider elliptical elements in the XY plane
with the magnetization along the X axis. In Fig. 1, we show
the amplitude of the Y component of the spin for “extended”
spin-wave states with the largest q=0 Fourier components
with increasing dipolar interaction. When the dipolar inter-
action is zero �left�, the state is nearly uniform. Recent simu-
lations on different device prospects were carried out on very
thin films. For a film of thickness 20 Å, �middle� the state is
no longer uniform. When a film thickness is 200 Å, a much

higher q Fourier component is present. At the same time,
more than one state can exhibit a significant q=0 response.

We studied the response to a uniform but time varying
external field in a direction perpendicular to the magnetiza-
tion in the presence of a static magnetic field applied along
the magnetization axis; as it is typical in ferromagnetic reso-
nance experiments. When the static field is opposite to the
magnetization direction, the peak of the finite frequency re-
sponse function can increase by an order of magnitude. This
suggests an intriguing scenario for assisted switching of the
magnetization with an additional external ac field. We now
describe our results in detail.

II. FORMULATION

The usual spin-wave calculation assumes translational
symmetry and is diagonalized assuming that the crystal mo-
mentum q is a good quantum number. We first generalize this
to a finite system without translational symmetry.

We write the Hamiltonian of the system as U
=�a,b=X,Y,Z;i,jMab

0 �ij�SaiSbj. For a finite system, the spins in
equilibrium are no longer completely parallel to each other,
the spin at site n is aligned along a direction S0�n�. We call
this the local x direction and look for a small deviation of the
spin from this equilibrium direction. We follow the usual
Holstein-Primakoff transformation and introduce the canoni-
cal variables:

Sz�n� = �S/2�1/2�a�n� + a��n��

Sy�n� = i�S/2�1/2�a�n� − a��n��

Sx�n� = S − a��n�a�n� . �1�

With this, the commutation relationship between the compo-
nents of the spin operator is preserved. The local coordinate
system with lower case subscripts is related to the space-
fixed system with upper case subscripts by a rotation matrix
RiJ�n� so that Si�n�=�ARiA�n�SA�n�. For example, if the
spins lie in the plane in equilibrium �the XY plane� so that
S0�n�= �SX

0�n� ,SY
0�n� ,0�, then RxX�n�=RyY�n�=SX

0�n�, RxY�n�
=−RyX�n�=SY

0�n�. Ignoring the constant terms, the Hamil-
tonian has the form:
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U = �
i,j

�Mz�ij� − My�ij���S/2��a�i�a�j� + a��i�a��j��

+ �Mz�ij� + My�ij� − 2hxi�i,j�Sa��i�a�j� , �2�

where we sum over the positions labeled by i, j. Ma�ij�
=�ABRaA�i�RaB�j�MAB

0 �ij�, and hxi=� jMx�ij�. Because we
have expanded from the equilibrium configuration, there are
no terms linear in the operators. We next introduce the “Bo-
goliubov” transformation:

b = �
i

u�i�a�i� + v�i�a��i�

b� = �
i

u�i��a��i� + v��i�a�i� �3�

1 = �
i

�u�i��2 − �v�i��2 �4�

and diagonalize the Hamiltonian with the equation of motion
method. The time rate of change of the operator b is given by
�U ,b�=�u�i��U ,a�i��+v�i��U ,a��i��, which in turn has to be
equal to −�b. �We use units so that �=1.� We get the eigen-
value equations

�Mz
T − My

T�u − �Mz
T + My

T − 2hx�i,j�v = �v ,

− �Mz
T − My

T�v + �Mz
T + My

T − 2hx�i,j�u = �u . �5�

This can also be written as Gz�u−v�=��u+v�, and Gy�u
+v�=��u−v�, where Ga=2�Ma

T−hx�i,j� for a=z ,y. Simplify-
ing this we arrive at the equation:

GzGy�u + v� = �2�u + v� . �6�

The eigen problem involves the product of two matricies.
Even though the product matrix GzGy is not symmetric, as

shown below, the matricies M and hence the individual ma-
tricies Gy,z are real and symmetric. There are subroutines in
LAPACK that deal with this type of eigenvalue problem if
one of the matricies is positive definite. For our specific
problem of thin films, the matrix Gz satisfies this condition
because of the shape anisotropy gap that confines the spins in
the xy plane. Since �u−v�=�Gz

−1�u+v�, the normalization
condition �4�, which comes from the quantization condition
of the spin wave �b ,b+�=1, becomes

�u + v�TGz
−1�u + v� = 1/� . �7�

Here, 1 /� means a diagonal matrix with diagonal elements
�1 /�1 ,1 /�2 , . . .� The LAPACK routines uses the normaliza-
tion condition �u+v�TGz

−1�u+v�=1. This can be easily modi-
fied. The susceptibility along direction I, �I, is calculated as
usual from linear response theory7 as a spin autocorrelation
function:

�I�q,�� = �1/N��
a

��a�SI�q��0��2�a/��2 − �a
2 + i��a�� ,

�8�

where SI�q�=� jSI�j�exp�iq ·Rj�. � is a phenomenological
damping constant. In this paper, we shall focus on I=y, cor-
responding to a uniform time varying external field in the
plane in a direction perpendicular to the magnetization. We
next relate My,z and hx to the physical quantities of the sys-
tem.

III. IMPLEMENTATION

In this paper, we assume that the film thickness is much
less than the magnetic length so that all spins perpendicular
to the film are parallel to each other. Let us consider the spins
in a plane with the magnetization along the X axis and

FIG. 1. The amplitude of the Y component of the spins for the eigenstate with the largest q=0 component at different sites for the case
with no dipolar interaction �left�, for a 20 Å thick permalloy film �middle�, and for a 200 Å thick permalloy film of elliptical shape with
dimensions 1�0.5 microns. The short-range exchange interaction remains unchanged.
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uniaxial anisotropy along the X direction. The Hamiltonian is
given by:

U = − 1/2�
�i,j�

JijS�i� · S�j� − K/2�
i

Sx
2�i� − H�

i

Sx�i�

+ 1/2g�
ij
	 �

�,�=x,y
D���Rij�S��i�S��j�

− �Dxx�Rij� + Dyy�Rij��Sz�i�Sz�j�
 , �9�

where

D���R� = ���/R3 − 3R�R�/R5 �10�

and J, g, and K are the exchange, dipolar, and intrinsic an-
isotropy interaction constants, respectively. For permalloy
films we have used the “bare” interaction J=450 K, g
=0.055 K, and K=4.3�10−4 K.

The Fourier transform of D���R� has the form:

d���q� = �
R

�cos�qR� − 1�D���R� + d��
0 = D���q� + d��

0 ,

�11�

where d��
0 =�R���� /R3−3R�R� /R5�, D���q� is the Fourier

transform of the dipolar interaction. For an infinite system it
is identical in form to the dynamical matrix of the two-
dimensional �2D� electron crystal and has been evaluated
previously,8,9 D���q�→2	q�q� /qv0+O�q2� for q→0, v0 is
the unit cell volume of the crystal.

We thus get, for a ,b=x ,y

2Mab
0 �ij� = Ha�a,b − ��i,j�Jij�a,b + gDab�Rij� − �a=x=b�i,jK/2

�12�

2Mzz
0 �ij� = − ��ij�Jij − g�Dxx�Rij� + Dyy�Rij�� �13�

Just as in the study of dynamics, we shall approximate the
system by a collection of block spins with renormalized in-
teractions between them.10 This approximation excludes
from our consideration the high-lying states with Fourier
components that are larger than the inverse block spin length.
The equilibrium spin configuration is obtained from a finite
temperature Monte Carlo simulation using a code we have
developed and optimized over the past ten years.9

FIG. 2. The imaginary part of the response function J�Y�q
=0,�� / �g
B�2 for permalloy films of elliptical shapes with dimen-
sions 1�0.5 microns. Here, J is the exchange, 
B is the Bohr
magneton, g is the g factor. � was set to a value of 0.1. �a� For a
thickness of 20 Å at zero �dashed line� and a reversing field Hx of
−30 Oe �solid line�. �b� For a 200 Å thick film at zero �dashed
line� and a field of 300 Oe �solid line�.

FIG. 3. The amplitude of the Y component of the spins at different sites for the first nine eigenstates in a 20 Å thick permalloy film of
elliptical shape with dimensions 1�0.5 microns at zero external field. The pair of numbers shows the spin wave frequency in GHz and the
magnitude of the structure factor.
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IV. RESULTS

To illustrate the physics, unless otherwise stated we focus
in this paper on elliptical structures made of permalloy with
dimensions 1�0.5 microns and of different thicknesses. We
have calculated the eigenstates in the presence of static mag-
netic fields applied along the magnetization direction �x� and
obtained the imaginary response functions as a function of
frequency. In Fig. 2�a�, we show results for a 20 Å permal-
loy film at zero external field �dashed line� and at a finite
reversing field of −30 Oe �solid line.� More than one peak is
seen in the response function. This is because more than one
state can exhibit a significant q=0 response. As the reversing
field becomes nonzero, the positions of the peaks decreases
�solid line in Fig. 2�.

No such increase is observed for a forward field, as is
illustrated in Fig. 2�b� for a 200 Å permalloy film.

In Fig. 3, we show the first nine spin-wave states �from
left to right and top to bottom� for a 20 Å film at zero field.
The spin-wave frequency in GHz and the magnitude of the
structure factor is also shown for each state. The first two are
surface states localized near the two edges. A large spectral
weight for the q=0 response comes from the surface states.
These modes basically correspond to the movement of edge
domain walls, and are responsible for magnetization reversal
under a static reversing field. For a rectangular shape sample,
there are more surface states, corresponding to higher spatial
Fourier components along the y directions, similar to previ-
ous results.1,2

As the reversing field becomes nonzero, the spin wave
frequency decreases �solid line of Fig. 2� and their contribu-
tion to �SY�q=0�� increases. The corresponding spin-wave
states are shown in Fig. 4. At a finite reversing field, the

surface states are lower in energy, become more extended
and hybridized more strongly with the extended states that
coupled to a uniform external field. These states are respon-
sible for the large susceptibility in Fig. 2�a�.

For spin waves of wave vector q in an infinite sample, the
spin-wave energy is given by �= �Gz�q�Gy�q��1/2, where in
the long wavelength limit Gz�q�=�z+ Z

2 JS�a0q�2−gS
2	qa0

v0
,

Gy�q�=�y + Z
2 JS�a0q�2+gS

2	qy
2

v0q , �y =H+K+g�dxx
0 −dyy

0 �, �z

=K−g�dyy
0 +2dxx

0 �, a0 is the lattice constant. Z is the number
of nearest neighbors. Because of the dipolar term, the mini-
mum of � occurs not at q2=0 but at a finite qy
=0.5g�x / �J��x+�z��, which we call q1. This dispersion is
illustrated in Fig. 5 as the dotted lines. For a structure of

FIG. 4. The amplitude of the Y component of the spins at different sites for the first nine eigenstates in a 20 Å thick permalloy film of
elliptical shape with dimensions 1�0.5 microns. A static field Hx=−30 Oe is applied. The spin-wave frequency in GHz and the magnitude
of the structure is also shown.

FIG. 5. Illustrative magnon dispersion for an infinite system in
arbitrary units �dotted lines� for a thin �a� and a thick sample �b�.
The units are arbitrary. The allowed wave vectors are shown by the
solid crosses.
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length Lx, the possible wave vectors are integer multiples of
G=2	 /Lx. This is illustrated in Fig. 5�a� as the solid crosses.
Thus for small structures so that G�q1, the lowest extended
excitation can still occur at the wave vector q2=0, as is il-
lustrated in Fig. 5�a�. This corresponds to what we observe
for the 20 Å films shown in Fig. 3. As the film gets thicker,
the effective dipolar coupling is increased and q1 decreases;
the lowest excitation now occurs at a finite wave vector. This
state is illustrated in Fig. 5�b� labeled as B. This corresponds
to what we observe for the 200 Å films shown in Fig. 6. As
we see in Fig. 5, for the thin film case �a�, the q=0 state
hybridizes with the state labeled B because they are close in
energy. For the thick film case �b�, the q=0 state now hy-
bridizes also with the state labeled C, which is also close in

energy but possesses a larger q. This corresponds to what we
showed in Fig. 1.

The hybridization of states of different wave vectors for
thicker films is illustrated in Fig. 6 where we show the low-
est 9 spin wave states for a 200 Å thick permalloy film. As
can be seen, the states are now different from those in Fig. 3.

The magnon densities of states are shown in Fig. 7. Under
a finite reversing field �solid line�, the density of states at low
energy increases, which may enhance the magnitude of the
1/f noise in these structures. This comes about because the
spin wave energy is now decreased. The finite value of the
density of states at zero energy comes from a phenomeno-
logical lifetime of 0.9 GHz that we have used in calculating
the density of states. As the film gets thicker �200 Å� the
energy of excitation increases �dashed line�.

The effects discussed in this paper are primarily due to the
presence of the dipolar interaction and not due to the finite
size of the system. When the dipolar interaction is absent, no
surface state is found. There is only one state with a signifi-
cant q=0 component, which is nearly uniform in space. The
ordering of the states is what one expects.

In conclusion, in this paper, we described a way to com-
pute the spin-wave excitation for small magnetic structures
numerically. The dipolar interaction is found to cause many
interesting effects. We focus on the hybridization of states
with different spatial Fourier components. We found that as
the film gets thicker, states with a significant q=0 component
are hybridized with states with higher Fourier components.
In the presence of a static magnetic field opposite to the
magnetization direction, surface states that are responsible
for magnetization reversal are coupled to the extended states.
The response function can increase by an order of magni-
tude. This may be of interest in assisted switching by an ac
field.

FIG. 6. The Y component of the spins at different sites for the first nine eigenstates in a 200 Å thick permalloy film of elliptical shape
with dimensions 1�0.5 microns at zero external field. The spin-wave frequency in GHz and the magnitude of the structure is also shown.

FIG. 7. The magnon density of states for different structures.
�dotted and dashed lines: 20 and 200 Å thick films at zero field;
solid line: 20 Å thick film in a finite reversing field of 30 G. A
Gaussian width of 0.9 GHz is assumed for each state.
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